Influence of particle characteristics on granular friction

نویسندگان

  • Jennifer L. Anthony
  • Chris Marone
چکیده

[1] We report on laboratory experiments designed to illuminate grain-scale deformation mechanisms within fault gouge. We vary particle size distribution, grain and surface roughness, and gouge layer thickness to better understand how grain sliding, rolling, dilation, and compaction affect the strength and stability of granular fault gouge. The experiments employed the double direct shear testing geometry and were run at room temperature, controlled humidity, and shearing rates from 0.1 to 3000 mm/s. Experiments were carried out under constant normal stress of 5 and 10 MPa and thus within a nonfracture loading regime where sliding friction for smooth, spherical particles is measurably lower than for rough, angular particles. We compare results from shear between smooth boundaries, where we hypothesize that grain boundary sliding is the dominant deformation mechanism, and roughened surfaces, where rolling and granular dilation contribute to shear deformation. We find that particle angularity and bounding surface roughness increase the frictional strength within sheared layers, indicating differences in particle reorganization due to these factors. In gouge material composed of <30% angular grains we observe repetitive stick-slip sliding where stress drop decreases while preinstability creep increases with increasing gouge layer thickness. Our data show significant differences in stick-slip characteristics as a function of gouge layer thickness and particle size, which we interpret in terms of the mechanics of grain bridges that support forces on the layers. We suggest that force chains exhibit qualitative differences as a function of grain angularity and bounding surface roughness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Young’s Modulus and Surface Roughness on the Inter-Particle Friction of Granular Materials

In the study we experimentally examine the influence of elastic properties and surface morphology on the inter-particle friction of natural soil grains. The experiments are conducted with a custom-built micromechanical apparatus and the database is enhanced by testing engineered-reference grains. Naturally-occurring geological materials are characterized by a wide spectrum of mechanical propert...

متن کامل

Friction phenomena and their impact on the shear behaviour of granular material

In the discrete element simulation of granular materials, the modelling of contacts is crucial for the prediction of the macroscopic material behaviour. From the tribological point of view, friction at contacts needs to be modelled carefully, as it depends on several factors, e.g. contact normal load or temperature to name only two. In discrete element method (DEM) simulations the usage of Coul...

متن کامل

The Influence of Contact Friction on the Breakage Behavior of Brittle Granular Materials using DEM

In this study, a numerical triaxial compression test was carried out to investigate the influence of contact friction on the breakage behavior of brittle granular materials using the 3D discrete element method. An commercial software named Particle Flow Code 3D (PFC3D) was applied to undertake these simulations. The cubic numerical model was 30mm wide, 30mm long, and 30mm high, and contained 56...

متن کامل

Numerical Simulation of Granular Motion by Particle Flow Code under Vibration

Internal friction and void ratio will change among granular particles under vibration, and the size of void ratio directly affects strength of granular media. To further study the effect of vibration parameters on granular mechanical properties, discrete element method is used to simulate particles motion in a vibrating rectangular case by PFC2D software and study the influence of vibration fre...

متن کامل

Microstructure evolution during impact on granular matter.

We study the impact of an intruder on a dense granular material. The process of impact and interaction between the intruder and the granular particles is modeled using discrete element simulations in two spatial dimensions. In the first part of the paper we discuss how the intruder's dynamics depends on (1) the intruder's properties, including its size, shape and composition, (2) the properties...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005